

**PIAGET'S COGNITIVE DEVELOPMENT THEORY AND ITS IMPLICATIONS FOR
TRANSFORMING MATHEMATICS EDUCATION IN THE 21ST CENTURY**

BY

KWAGHNGU, REUBEN ABRAHAMS¹

atebawa67@gmail.com (08032602077)

&

PROF. EMAIKWU, SUNDAY OCHE²

emaikwuoche@yahoo.com(07038377249)

^{1&2} Department of Mathematics Education, Joseph Sarwuan Tarka University, Makurdi

Abstract

Jean Piaget's theory of cognitive development, grounded in constructivist and structuralist views of how children actively build knowledge, continues to exert a deep influence on Mathematics Education. By delineating stages of cognitive growth (sensorimotor, pre-operational, concrete operational, formal operational) and describing processes such as scheme formation, assimilation, accommodation, and equilibration, Piaget provides a compelling framework for understanding how learners come to reason mathematically. This article examines the core constructs of Piaget's theory, reviews recent empirical research linking those constructs to Mathematics Education, and explores ramifications for curriculum design, pedagogy, assessment, teacher professional theory into Mathematics teaching and learning in the 20th century, means viewing learners as active constructors

of knowledge, not passive recipients. Teachers play the role of facilitators, guiding discovery and creating environments that support hand-on exploration, reflection and progressive abstraction. Through such developmentally appropriate practices, students build not only Mathematical skills but also the cognitive structures essential for lifelong learning. Finally, the paper suggested outlines for education systems and practitioners to transform teaching and learning of Mathematics in ways aligned with cognitive readiness, conceptual depth, and 21st-century demands of learners.

Keywords: Piaget's Cognitive Development Theory, Implications, Transformation of Mathematics Education, 21st Century

Introduction

In 21st century where mathematics education must respond not only to procedural

competence but to conceptual understanding, problem solving, and reasoning ability, educators face the dual challenge of meeting both academic and moral needs of students.

The significance of cognitive development theory on how learners come to think mathematically cannot be overstated. Piaget's theory offers an enduring lens by which to view this challenge: it shifts the focus from what learners should know toward how they know, how they develop, and when they are ready for particular mathematical abstractions.

Korompis (2023) posits that applying Piaget's theory into Mathematics Education yields transformative potential. It invites curricula structured around developmental readiness; pedagogies that privilege active construction, manipulative and cognitive conflict; assessments that examine thinking, not just answers; teacher preparation that is cognizant of students' cognitive trajectories; and the judicious use of technology as a support rather than substitute for teacher-mediated conceptual development. Piaget proposed that children move through four stages of cognitive development each characterized by ways of thinking.

With regard to Core Constructs of Piaget's Theory and Their Educational Meaning, he posited that children progress

through four major stages as follows:

1. Sensorimotor (birth to -2 years)
2. Pre-operational (2-7 years)
3. Concrete operational (7 – 11 years)
4. Formal operational (11 years and above)

At the first stage (birth-2years) the infant learns a great deal by moving around. Initially the baby's scheme consists largely of inborn reflexes, but these reflexes change somewhat with experience. That is the child understands the nature of things in the context of their sensory physical presence, by looking, tasting, touching and feeling which aid the development of concepts formation. At the second stage (2-7years) the child at pre-operational stage is able to develop immature concepts (pre-concepts). Child thinking and understanding is based on the physical appearance of objectives. The child at this stage has mental abilities to represent objectives he sees or knows through tracing, drawings, painting and imitation. The child at this level is more capable of symbolic learning. In the third stage (7-11 years) Piaget argued that the shift from pre-operational to

concrete operational thinking of the child involves an increasing independence of thought and perception (the evidence of your senses). That is the child thinking and knowledge is based on his own personal experiences. At this stage a child can engage in reversible thinking as well as conservation of information. He can also pay attention to all features of objectives before taking any judgmental conclusion. Underlying of this shift is the development of various cognitive operations, such as manipulation and mathematical calculation skills. At the fourth stage (11year and above), formal operational stage, the learner can think in abstraction and can deal with concepts that do not have concrete references. It involves the ability of a child to think in terms of many possible states of the world. Formal operational stage is the peak of mental development of the child, which enables him, thinks logically, scientifically and engages in mental manipulations of information. Piaget believes that new schemes are the offshoots of the old schemes.

These stages are not strictly age-bound in practice and show individual and cultural variability, but they provide a useful heuristic for identifying cognitive readiness in learners. Educationally, this suggests that abstract

mathematical reasoning (e.g., algebraic generalization, proof) becomes more viable when a learner is at or beyond the concrete operational stage. The absence of such readiness may explain why many students struggle with abstraction. Recent research confirms links between age/level and performance on tasks with increased abstraction.

Piaget (1957) cognitive development theory states that the ability of individuals to develop schemes, assimilate and accommodate ideas, knowledge or skills is the function of their interaction with natural environment. Piaget argued that children develop schemes mental structures for organizing experiences. When encountering new information, they either assimilate it into existing schemes or accommodate by modifying schemes to fit new experience, leading to equilibration (a balance between assimilation and accommodation).

In Mathematics Education, this translates into recognizing that learners enter the classroom or school with a prior naive conceptions (e.g., “multiplication is repeated addition”) and must encounter tasks that challenge those, leading to new or refined schemes (e.g., understanding multiplication as scaling). Mathematics Teachers must intentionally design opportunities for

disequilibrium and subsequent resolution by the learners. Piaget believed that during infancy, it is an interaction between human environment and their experiences that constitute knowledge. Jean Piaget the founder of constructivism called these systems of knowledge schemata. Constructivists aim at teaching for an understanding which promotes the idea that new learning is built on the pre-existing cognitive structure. If there is a new experience, or a mismatch between the new experience and existing schema this creates an unpleasant state cognitive conflict which the learner need to resolve before meaningful learning will take place.

Cognitive Conflict and Constructivism

A central tenet of Piaget's cognitive theory is that learning occurs through active participation and construction of knowledge, not passive reception of knowledge by the learners. This means that Mathematics teachers must intentionally allow students to manipulate and experiment with environment or objects to discover patterns, relationships and properties which eventually will lead to cognitive conflict. Cognitive conflict is a situation where a learner's existing scheme fails to accommodate new evidence is a driving force for development. In mathematics, tasks must therefore be

designed to provoke thinking, require manipulation, test conjectures, and lead students to restructure their thinking. This aligns with contemporary constructivist and inquiry-based pedagogy. Piaget's constructivist and inquiry-based pedagogy is built on horizontal and vertical decalogue.

Horizontal and Vertical Decalogue

Piaget's concept of Decalogue describes uneven progression across tasks:

1. Horizontal Decalogue: even when a child masters one form of logic in a domain, they may struggle to apply it in a closely related domain (e.g., conservation of volume but not yet conservation of mass).
2. Vertical Decalogue: gradual refinement of a cognitive function over time (e.g., understanding of striation across different contexts).

In mathematics education this implies that developing reasoning in one context (e.g., numeric) does not guarantee immediate transfer to another (e.g., geometric). Educators must therefore scaffold across contexts.

Empirical Evidence Linking Piagetian Constructs with Mathematics Education

The application of Piagetian ideas remains

not only historically significant but also empirically relevant in recent research.

Fani, (2023) carried out a study on early child numeracy skills in Mathematics within the pre-operational stage (ages 2-7) students at the University of Pretoria. The study found out that concrete, hands-on, play-based activities, significantly improved children's counting, subitising, number comparison and combination skills, underscoring Piaget's emphasis on concrete experience in early stages.

Korompis (2023) investigated geometry learning in elementary in selected schools applying Piaget's theory of conservation in Rwanda. The study found no significant difference in achievement based on age (9, 10, 11), it raised important questions about cognitive readiness and curriculum alignment.

Dawkins, *et al.*, (2024) conducted a study to compared students aged 8-10 (concrete operational) versus 15-18 (formal operational) of technological curriculum tasks in Australia. The study found that the formal operational students performed significantly better in abstraction and spatial inferential reasoning than concrete operational students. This finding is consistent with Piagetian stage predictions.

Sharma (2023) analyzed India's NEP-2020

policy structure (5+3+3+4) through a Piagetian lens. This result indicated that Indian new curricular segmentation aligns with cognitive developmental stages as Piaget envisioned.

These studies highlight two core lessons for Mathematics Education that: (1) instructional design must be aligned with cognitive readiness and (2) conceptual abstraction should follow concrete operational experience rather than precede it.

Implications for Transforming Mathematics Education

Curriculum developer is at every stage involved in a series of decision-making based on a number of very vital areas of concern in Mathematics Education. According to Lyop, (2002) areas of concern that are referred to as the bases of Mathematics curriculum development includes:

1. Developmentally sequenced tasks: Curriculum should be structured so that manipulative, representational work precedes symbolic work. For example, in algebra, students should work with concrete models of function (e.g., machines with input/output) before abstract notation.

2. Conceptual prioritization: Instead of covering many topics superficially, mathematics curricula should emphasize fewer topics but develop them deeply through multiple representations (concrete, pictorial, symbolic) and rich problem contexts.
3. Embedding cognitive conflict: Task design should intentionally include situations in which students' current thinking fails. For example, giving two sets of counters of equal number but different configurations and asking "Which has more?" provokes the notion of conservation and leads toward deeper reasoning.
4. Cross-context bridges: Planning should anticipate horizontal Decalogue by providing tasks that apply logical operations across contexts (e.g., number, geometry, measurement) and gradually scaffold across domains. Piaget cognitive theory emphasized that children construct knowledge through active engagement that matches their developmental stage. This developmental stages of children have great implication on Mathematics teaching pedagogies.

Pedagogy: guided discovery,

manipulative, scaffolding, and reflection

1. Concrete-Representational-Abstract (CRA) progression: Teachers should guide students from hands-on use of manipulative to pictorial representations (bar models, number lines) and finally to symbolic notation (Fani, 2023). This aligns with Piaget's stages and addresses readiness for abstraction. This means that teaching Mathematics to achieve this, teachers should use hand-on materials like blocks, counters, fraction bars or geometric bars. By so doing the teacher will allow students to manipulate and experiment with objects to discover patterns, relationships and properties
2. Guided discovery: Instead of purely didactic instruction, teachers should pose inquiry tasks, invite student prediction, allow experimentation, facilitate group discussion, and then guide refinement of thinking (Fani, 2023). For example, rather than a Mathematics teacher telling students

the property of commutativity, students might let to experiment with counters in different arrangements and observe invariance.

3. Scaffolding and fading: Teachers initially provide support (questioning, prompts, modelling) and gradually withdraw to encourage students' independence. Formative assessment helps decide when to fade supports (Sharma 2023). For this to be effective teaching and learning of Mathematics teachers should start lessons by assessing what students already know through questioning and reflection to connect new concepts to familiar experiences.
4. Reflection and metacognition: Encouraging learners to reflect on how their thinking changed (metacognitive prompts such as "What did I think at the start? What changed?" aligns with Piaget's focus on scheme modification and equilibration. Dawkins, *et al.*, (2024) posits that teaching Mathematics to align with Piaget's schema modification means building lesson on students' prior knowledge (schema development) as learning occurs as students assimilate new ideas into existing mental frameworks(schemas) or accommodate by modifying those frameworks. In practice the concept of multiplication should be link to repeated addition, while fraction should be link to sharing equally.
5. Social interaction: While individual construction is central to Piaget, recent research confirms that peer discourse and collaborative tasks enhance cognitive conflict and reflection. Teachers should design group work and peer-explanation tasks as part of scaffolding (Dawkins, *et al.*, (2024). The theory is important in teaching and learning of Mathematics because it provides good knowledge for the teachers to assess the level of children intellectual development, understanding and readiness before introducing any new mathematical concept.

Assessment: formative, diagnostic, reasoning-oriented

Assessment is the process by which information is obtained relating to some known objectives or goals (Obinne & Agi, 2013). Assessment in Mathematics according to Emaikwu (2011) occurs whenever a

teacher, through direct or indirect interaction with students is consciously obtains and interprets information about the knowledge and understanding abilities of the individual student. According to the author, assessment is important in the following ways:

1. Frequent formative checks: Low-stakes assessments that probe students' thinking (not just correct answers) allow teachers to identify schemes, misconceptions, and readiness for abstraction.
2. Misconception diagnostics: Tasks should reveal common misunderstandings (e.g., confounding area and perimeter, or misunderstanding variable as fixed). These tasks help trigger the disequilibrium process.
3. Process-focused assessment: Students should be asked to explain reasoning, sketch representations, and reflect on their thinking, not just compute. This aligns with Piaget's concern for how knowledge is constructed rather than just what is known.
4. Staged readiness indicators: Teachers can use suitable markers of concrete operational readiness (e.g.,

conservation tasks, reversibility tasks) to decide whether it's appropriate to progress to more abstract tasks. Piaget's cognitive theory of development helps teachers when preparing for lessons and their professional growth in diverse ways.

Teacher Preparation and Professional Development

The knowledge of Piaget's theory of cognitive development can help teachers to develop professionally in the following ways:

1. Knowledge of cognitive development: Teacher-education programmes must include content on cognitive developmental trajectories and how these relate to mathematics learning, not just generic pedagogy.
2. Modelling and classroom practice: Professional development should include lesson-study, video-analysis, co-teaching, and reflection on how to design tasks that provoke conflict, support scheme-change, and scaffold abstraction.
3. Tools for diagnostic assessment: Teachers must develop competence in interpreting student thinking and designing tasks accordingly. They

should become 'cognitive diagnosticians.

4. Technology aptitude: While technology can assist, teacher preparation should emphasise that digital tools must support, not replace, conceptual construction. Teachers must know how to integrate technology in ways consistent with cognitive development.

Teaching Mathematics in the 21st Century

The 21st century is marked by rapid technological advancement, complex societal problems and growing demand for critical thinking, creativity and adaptability. Mathematics as a foundational discipline for Science, Technology, Engineering and Mathematics fields, must evolve accordingly.

1. Adaptive and intelligent systems: ICT/AI tools that adapt to student responses and provide targeted practice can supplement teacher-led conceptual work. For example, systems that identify misconceptions and provide targeted interactive feedback can free teacher time to focus on conceptual scaffolding.
2. Virtual manipulative and simulations: These tools enable experimentation that mirrors physical manipulation, crucial in Piagetian concrete-representational transition. However, technology must be used thoughtfully: mere animation is not enough; students must interact, hypothesize and reflect.
3. Blended approach: Recent research emphasizes that technology should complement rather than supplant teacher guidance. A flipped-classroom study found improved outcomes when students had active roles in exploring, then teachers' facilitated interpretation.
4. Equity and cognitive readiness: Since cognitive development differs individually and culturally, technology must be flexible and personalized. Teachers must monitor readiness to avoid pushing learners into abstraction prematurely.

System and Policy Implications

Incorporating Jean Piaget's theory of intellectual development into the teaching and learning of Mathematics in 21st will provides a powerful framework for designing age-appropriate, engaging and conceptually meaningful instruction.

1. Curriculum reform: National

and local curricula should integrate developmental sequencing of mathematics topics and ensure conceptual depth rather than breadth. For instance, the Indian NEP-2020 uses a 5+3+3+4 structure aligned with Piagetian stages.

2. Assessment systems: High-stakes exams should include tasks assessing reasoning and representations, not just procedures. Formative and teacher-based assessments should precede summative assessments.
3. Professional development investment: Governments and education authorities must invest in long-term teacher professional development focusing on cognitive development, mathematical content knowledge, and instructional design.
4. Technology infrastructure: Access to manipulatives (physical and virtual), diagnostic platforms, and teacher training in their use must be part of strategic investment.
5. Research-practice partnerships: Educational research must continue evaluating how Piagetian constructs operate in diverse cultural contexts.

For example, the recent study of early numeracy in Indonesia illustrates variability in numeracy development within Piagetian frames.

Practical Illustration: A Sample Sequence in Algebra

To illustrate how a mathematics educator might apply Piaget-informed design, consider a unit on linear functions for a class of learners aged around 12–14 (transitioning from concrete operational toward formal operational reasoning).

1. Concrete Stage: Students use physical machines or boxes with input/output counters to model “function” behaviour. They experiment: “when I put in 3, I get 7; when I put in 5, I get 11”. They record input/output pairs, draw tables and observe patterns. This uses concrete manipulative and supports scheme formation (function as rule linking input to output).
2. Representational Stage: They move to pictorial representations: graphing those pairs on grid paper; working with bar diagrams or dynamic software showing input/output mapping. They begin to predict “if I input 8, what will output be?” and reflect on the rule “output = 2 × input + 1”.

3. Symbolic/Abstract Stage: They write the formal rule $f(x)=2x+1$, solve problems such as “For which input will output equal 21?” or “What happens if input is negative?” They explore inverses and generalise to families of functions. Throughout this progression:

- a. Teacher begins with guided discovery, asks open questions (“What happens if we double the input then add one?”)
- b. Cognitive conflict is triggered when students’ initial guess (“output = input +1”) fails for larger inputs; they must adjust scheme to “output = $2 \times \text{input} + 1$ ”.
- c. Formative checks ask students to represent behaviour in multiple ways (table, graph, and rule) and explain reasoning.
- d. Technology (e.g., dynamic function software) might allow students to drag input and see output change, ask them to hypothesise the rule, test it, and refine it.
- e. Assessment focuses on students’ explanations (“How did you know the rule? What happens if input is 3? Why?”) Rather than just obtaining

numeric answers.

- f. This sequence aligns with Piagetian theory by scaffolding from concrete to abstract, using student-active construction, cognitive conflict, and monitoring readiness for abstraction.

Limitations and Critical Perspectives

While Piaget’s theory offers powerful insights, educators and researchers must be mindful of its limitations and complement it with other perspectives.

1. Variability in stages: The age ranges Piaget proposed are not fixed. Some learners reach formal operational thinking later; cultural, linguistic and socio-economic factors influence development.
2. Under-emphasis on social context: Critics argue that Piaget pays less attention to the role of language, culture and social mediation (in contrast to Lev Vygotsky). In mathematics education, peer interaction, teacher scaffolding and cultural tools matter significantly.
3. Over-emphasis on stages: Some contemporary research suggests development is more continuous and domain-specific than Piaget’s broad

stages imply.

4. Transfer and abstraction hurdles: Even students at the formal operational stage may struggle in one domain but succeed in another—a reminder of horizontal décalage and the need for explicit scaffolding across contexts.
5. Given these caveats, mathematics education reform should view Piaget's theory not as a rigid blueprint but as a guiding heuristic, to be integrated with socio-constructivist, cognitive neuroscience, and embodied cognition research. For example, recent neuroscience symposia show links between brain development, conceptual reasoning and mathematics learning.

Conclusion

The transformation of mathematics education toward deeper conceptual understanding, reasoning capacity and 21st-century readiness is well served by grounding design and pedagogy in cognitive developmental theory. Piaget's framework remains a cornerstone: his emphasis on stages of readiness, active construction, cognitive conflict, representational progression, and scheme modification provides rich guidance for curriculum design, pedagogy, assessment,

teacher preparation and technology integration. Mathematics educators are called to become architects of cognitive growth: designing experiences that respect where learners are and lead them toward where they must go. When curricula, classrooms, assessments and professional development are aligned with the cognitive paths that children naturally traverse, mathematics education can move beyond rote procedure toward robust reasoning, creativity, and lifelong competence.

References

Dawkins, P. C., Hackenberg, A. & Norton, A. (Eds.) (2024). *Piaget's Genetic Epistemology for Mathematics Education Research*. Springer.

Emaikwu, S. O. (2011). *Fundamentals of test, measurement and evaluation with psychometric theories*. Makurdi: SAP Ltd.

Fani, Y. (2023). The Cognitive Development of Children: From Piaget to Modern Theories. *Abnormal and Behavioral Psychology*, 9(5).

Fani, Y. (2024). carried out a study on early child numeracy skills in Mathematics through the lens of the Technologies curriculum". *International Journal of Technology and Design Education*.

Korompis, F. L. S. (2023). Piaget's Theory in Mathematics Education in Elementary School in selected Rwanda. *International Journal of Research and Review*, 10(6), 82–92.

Lyop, G. M. (2002). *Psychological bases of curriculum development*. In T. O. Oyetunde & Piwuna C. (Eds) Curriculum and instruction insight for strategies for effective teaching. Jos:LECAP'

Nugraha, A. C., & Nuriadin, I. (2024). The Development of Children's Early Numeracy Skills in the Piaget's Pre-operational Stage. MATHEMA: *Journal Pendekon Mathematical*, 2(4), 34-54.

Obinne, A. D. E. & Agi, C. I. (2013). *Assessment and evaluation: The Teacher's Tools for Measuring Learning*. In O.M. Nder & A. O. Amali (Eds) Effective Teacher Preparation. Makurdi: SAP Ltd.

Piaget, J. (1957). *Cognitive development*. New York: Grossman

Sharma, B. (2023). Piaget's Theory of Cognitive Development: A psychological base for NEP 2020. *International Journal of Research and Analytical Reviews (IJRAR)*, 10(3).